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Abstract
Middlewares for building social applications, in which in-
frastructure is provided by participants, are currently devel-
oped by open-source communities. Among those, Secure-
Scuttlebutt has pioneered the use of replicated authenticated
single-writer append-only logs, i.e., chains of ordered im-
mutable events specific to each participant, replicated by
gossip algorithms that are driven by social signals, to build
eventually-consistent social applications. The use of per-
sistent append-only logs removes parameters traditionally
required to be tuned for gossiping. We present two gossip
models that can be used for replication: a new open model,
simpler than the current SSB implementation, that works
best in small and trusted groups; and the transitive-interest
model practically deployed by SSB, that scales to thousands
of participants and is spam- and sybil-resistant. We also
present limitations of both to motivate further research.

CCS Concepts: • Computer systems organization →

Peer-to-peer architectures; •Human-centered comput-
ing; • Computing methodologies → Distributed algo-
rithms;
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1 Introduction
Over the last decade, open source communities have pio-
neered a redecentralization of major Internet services [7]
with the promises, among others, of increased agency for
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participants over the data they produce and minimal infras-
tructure requirements beyond participants’ devices. Among
the ongoing projects, Dat [29], renamed Hypercore [14],
has been used to efficiently share large scientific datasets be-
tween research teams [31]. Also, Secure-Scuttlebutt1 (SSB) [37]
is actively used for social applications, e.g., blogging and
code development [33], and has active open-source mobile
clients [21, 27]. Both Hypercore and SSB are supported by a
combination of grassroot donations [1–3], grants [4], and a
large number of volunteers.

Both projects pioneered the use of replicated authenticated
single-writer append-only logs: chains of ordered immutable
events, similar to blockchains [15] but specific to each partici-
pant and without the need for global consensus. In particular,
SSB efficiently replicates logs using the Scuttlebutt gossip
protocol [39], by only transmitting the latest missing events
between pairs of replicas.
Compared to commonly-known gossip algorithms [13],

SSB has less parameters to tune: (1) no temporary buffer size,
logs are persisted because storage is abundant and cheap;
(2) no retransmission, events are exchanged over reliable
channels when found missing frommeta-data; (3) no fan-out,
i.e., number of neighbours to contact, participants exchange
events when they connect, often after days offline [32].2 The
result is a simple yet practical messaging middleware, as
shown by the hundreds of daily SSB participants [25].
Previous work on SSB has already described the secure

handshake [35], the data format and communication proto-
cols [5], and a general overview and comparison to other
information-centric approaches [37]. However, the range
and limitations of distributed abstractions that can be built
with SSB have yet to be shown both in theory and in practice.

In this paper, we provide a first step in that direction by
describing the core concepts of SSB that are used to provide
eventually-consistent replication: when a store receives a new
event (in a log), other stores eventually also receive a copy
of that event, as long as all stores are transitively connected
through a sequence of temporary connections. We present
two gossip models providing eventual consistency: first, we
1Scuttlebutt is marine slang for gossip: it refers to the water barrel sailors
gather around for refreshment and socialising. Secure-Scuttlebutt is gossip,
which contrary to real life, cannot be modified by intermediaries.
2One author successfully updated after months offline to find 4000 new
messages.
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propose a new open model that is simpler than currently
used in SSB but helps explain the mechanics and is easier
to implement for smaller and more trusted settings; second,
we present the model of the current SSB implementation,
which we call the transitive-interest model, that is used by
thousands of Internet participants, and is spam- and sybil-
resistant [10] by replicating only the logs participants are
interested in.

In the rest of this paper, we first present the core concepts
used by SSB in Section 2. We then present the open model in
Section 3 and the transitive-interest model in Section 4: for
both we present their gossip algorithm, the properties they
provide, some limitations, and the kinds of applications for
which they are suitable. We compare the design of SSB with
other related work in Section 5 and conclude in Section 6.

2 Concepts
SSB organises events in logs, that are replicated between
stores. Events may represent a user action or the result of
processing operations. Logs organise events in a data struc-
ture for efficient replication and integrity. Stores hold many
replicated logs either in the storage of an active process, or
passively on a storage device. Stores are connected over reli-
able communication channels, such as TCP connections over
the Internet or USB connections on a local machine. Many
data formats and communication protocols can be used, they
are therefore abstracted in this paper. We present events,
logs, stores, a procedure to reconcile the state of logs, and
briefly discuss the support of private content.

2.1 Event
An event is a tuple (id, previous, index, signature, content)
where:

id is the publicKey of the creator
previous is the hash of the previous event in the log in-

cluding the signature, null if none
index (sequence number) is the position of the event

in the log
content is defined by applications
signature is the cryptographic signature of id, previous,

index, and content, obtained with the privateKey
that corresponds to the publicKey

All fields except content represent themeta-data about events:
they enable efficient replication and integrity of the event
chain. Changing id, previous, index or content requires a
change of signature and the signature is linked to id: events
are therefore immutable for anyone but the owner of the
privateKey.

2.2 Log
A log is an identifier id associated to a sequence of events,
e.g., an empty log is id : [] and a log with two events is id :

[(id,null , 0, ..., ...), (id,hash0, 1, ..., ...)], with the operations
listed in Table 1.
All operations are implemented to ensure the log is: se-

cure, i.e., only the owner of the corresponding privateKey
can append new events; monotonic, i.e., information can
only be added to the log by adding new (immutable) events;
linear (total order), i.e., no two events have the same prede-
cessor (either null or a reference to a previous event); single
writer, i.e., all log events have the same id that corresponds
to the id of the log; connected: all log events are transi-
tively connected, i.e., no gaps in the sequence. A log with
those properties is said to be correct. The implementations
are omitted for brevity.

2.3 Store and Frontier
A store is a set {loдi , ...} that represents the logs stored locally.
Adding or removing logs in the store can be the result of
direct user actions or be indirectly the result of operations
triggered by new events added to logs.
A frontier is a set {(loдi .id, loдi .last ), ...} that represents

the latest known indexes about logs in a store. The differ-
ence between two frontiers, e.g., {(loдi .id, loдi .last ), ...} −
{(loд′i .id, loд

′
i .last ), ...} such that loдi .id = loд

′
i .id , represents

the new events in one store that are not yet in the other. Two
frontiers may differ in the logs they contain because two
stores may contain only partially overlapping sets of logs:
in that case the difference between the two frontiers only
comprises the logs with ids present in both.
Stores and frontiers are linked to events and logs by the

operations listed in Table 2.

2.4 Updating
Two stores in different locations may diverge because new
events have been added locally. Updating is the process of
propagating the new events in one store not present in the
other. The following sequence of operations ensures that
logs present in both stores, i.e., that have the same id, will
both contain the same sequence of events:

Algorithm 1 Update (store, store ′): update store and store ′
with missing new events present in the other.
1: frontier← store .frontier(store .ids )
2: frontier′ ← store ′.frontier(store .ids )
3: news← store .since (frontier′)
4: news′ ← store ′.since (frontier)
5: store ← store .update (news ′)
6: store ′ ← store ′.update (news )

Algorithm 1 provides: consistency, i.e., if two logs with
the same id are present in two stores, then after an update
both logs will contain the same events; terseness, i.e., only
events present in either store or store’ but not the other are
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Table 1. Authenticated single-writer log operations

loд ← create (publicKey) create a log from a public key
loд ← loд.append (content ,privateKey) extend the log with a new event created locally (as owner) from content
loд ← loд.update (events ) extend the log with the subset of compatible events previously created remotely
events ← loд.дet (start , end ) get the set of events with index included between start and end (can be the same)
index ← loд.last get the index of the last event stored locally
id ← loд.id get the id (publicKey) of the log

Table 2. Store operations

store ← store .add (loд) add a log to the store
store ← store .remove (id ) remove the log with id

from the store
loд ← store .дet (id ) get the log with id from

the store (if present)
ids ← store .ids get the set of ids of the

logs in the store
frontier← store .frontier(ids ) get the current frontier of

the store only for ids
events ← store .since (frontier) get the set of events that

happened after frontier
store ← store .update (events ) update the logs in store

with events

exchanged; conservative replication, i.e., only logs already
present in store are updated, other logs are ignored.
Consistency provides a network of stores with eventual

consistency on the logs they share, i.e., when a store re-
ceives a new event, other stores eventually also receive
a copy, as long as the network is transitively connected
through a sequence of temporary connections. Tersenessmin-
imizes bandwidth and the conservative replication of logs
ensures that unknown logs and their events are only propa-
gated after being first explicitly added to the local store.

2.5 Private Content
SSB uses Ed25519 key pairs both for signature and encryp-
tion [24]. Access to content is restricted by encrypting it
using the publicKey of recipient(s) using a private-box [38],
a scheme that hides the recipients, their number, and the
content. When encrypted content arrives during an update,
a recipient tries to decrypt it with their privateKey. If the
decryption succeeds, the content was intended for them,
otherwise not.

3 Open Gossip
In this section, we present an open, or unrestricted, gossip
model to illustrate the basic mechanics. The goal of this
model is to maximise the diffusion of events by replicating
them in all participants.

Algorithm 2 provides the pseudo-code of one implementa-
tion: every time a pair of stores are connected, logs present

in only one store are added to the other, and then both stores
are updated using Algorithm 1. To be concise, the algorithm
is written from a global perspective: in practice it is actually
implemented as a two-parties protocol.

Algorithm 2 Open Gossip
1: loop
2: Randomly pick store and store’ from Participants
3: for id’ in store’.ids− store.ids do store.add(create(id’))
4: for id in store.ids− store’.ids do store’.add(create(id))
5: Update(store, store’)
6: end loop

3.1 Properties
This model implements total replication, i.e., after new
events are added in one store, all stores should eventually
contain the same logs (and the same events) including the
new events. Moreover, it provides total persistence, i.e.,
once an event is added to a store, it is kept forever.
Even in this open model, private operations are possible.

For example, any participant can automatically backup pri-
vate information by creating an event and encrypting its
content using the publicKey of their log (and reading it back
later with their privateKey). If their copy of the store is lost or
destroyed, and they still have access to their privateKey, they
can retrieve all the content from any other participant. Also,
any participant can privately message other participants,
without revealing the recipients, by encrypting the content
of a message using the id (publicKey) of the corresponding
logs [38]. More generally, any privacy requirement that only
targets restriction of access to content, and can be satisfied
with cryptographic protocols, is compatible with this model
and the one in the next section.

3.2 Limitations
While simple and useful, the open model suffers from some
limitations. For one, the memory usage of each store is pro-
portional to the total activity, past and present, of all partic-
ipants. For relatively small groups and organisations, and
most activity recorded as text, audio, or images, the storage
capabilities of today’s integrated or removable drives suffices.
However, large groups may generate too much data.
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Second, within this model, participants have no agency.
Perhaps, they are not interested in some content, or perhaps
they actively object to replicating other logs. Yet, even if they
remove unwanted logs from their local stores, replicas from
other stores will be copied back. The same property enables
spam: a spammy log added to a single store will be replicated
in all others. This model is therefore applicable only within
small groups of mutually trusting participants.

3.3 Applications
Within small and highly trusting groups, it is often most
important to simplify the process of adding new participants
to make sure they quickly have access to all the information.
This model enables new participants to bootstrap their empty
store from any other participant.
The complete replication on each store enables offline

operation, similar to local-first applications [22]. This is ideal,
for example, to implement a team messaging application
where clients update over a local network and only a single
group uses that network. In that setting, security and privacy
is usually provided by the network policy in a local or virtual
private network (VPN).
When used with removable drives, this model is well

suited, e.g., to associations that only need to record contri-
butions, and quickly share past archives and recent updates.

4 Transitive-Interest Gossip
Some larger organisations, such as a university department,
may host hundreds and even thousands of participants. This
may become too many for the open model. In that case, the
replication of logs can be directed by the interest of partici-
pants towards one another. Doing so, the number of social
relationships participants can meaningfully track, estimated
to 150 people on average [11] and empirically validated on
Twitter [17], restricts the number of logs replicated. This
is the model currently used in SSB, with more than 10,000
identities created [37] and most participants having up to a
few hundred logs they actively follow.3 When such a model
is used for social applications, two additional problems arise.

First, some applications, e.g., conversations between many
participants, are spread over multiple logs. To ensure partic-
ipants receive all messages, the logs in the transitive graph
of interests should therefore be replicated. Additionally, this
may serve to discover new interesting people to follow, simi-
lar to how a friend may introduce a friend to another one.
Second, all participants may not follow the same way

as those they follow. Sometimes they are not interested in
the same people. Other times, past disagreements result in
one of the participants not wanting to receive information
about another through their common friend.4 It is therefore

3There is one extreme case of an SSB user that decided to manually follow
every other identities.
4Authors witnessed both multiple times in the last years.

necessary to also allow participants to block other logs from
being replicated in their store.
Similar to prior work on membership management [12],

the logs participating in the gossip algorithm also propagate
the interest/disinterest information. Doing so, both the con-
tent and where it should (and shouldn’t) flow propagate at
the same time through the same gossip. However, because
participants can have inconsistent interest/disinterests, each
participant can only have a subjective perspective of the entire
set of participants and global state of content.

Participants signal interest/disinterest by recording a fol-
low/block event in their log, that includes the target id. Follow
and block can be cancelled by recording an unfollow/unblock
event. Which ids are transitively followed or blocked, is com-
puted from the perspective of a specific participant’s id and
the other logs contained in a store. The additional operations
introduced by this model are listed in Table 3.

Table 3. Interest operations. privateKey abbreviated privK.

loд ← follow(loд,privK , id ) publicly record in loд ac-
tive interest in id

loд ← unfollow(loд,privK , id ) publicly record in loд lost
interest in id

loд ← block(loд,privK , id ) publicly record in loд ac-
tive disinterest in id

loд ← unblock(loд,privK , id ) publicly record in loд
drop of disinterest in id

ids ← followed(store, id ) retrieve ids transitively
followed from id in store

ids ← blocked(store, id ) retrieve ids transitively
blocked from id in store

Using the subjective followed and blocked operations re-
quires an explicit id to be associated with the stores of par-
ticipants for gossiping, as shown in Algorithm 3. Upon a
connection, the followed set is first computed and the miss-
ing logs added in the store. The ids that are blocked, and
present in the store, are then removed. After both partici-
pants have done the same, only the shared ids are updated.

Algorithm 3 Transitive-Interest Gossip
▷ Participants abbreviated P and store abbreviated st .

1: loop
2: Randomly pick (id,st) and (id,st’) from P
3: for f in followed(st,id) − st.ids do st.add(create(f))
4: for b in blocked(st,id) ∩ st.ids do st.remove(b)
5: ... ▷ Same for store st’
6: Update(st, st’)
7: end loop

Different algorithms can be used to compute the followed
and blocked sets. The current version of SSB uses the ssb-
friends module [36] that: (1) is set to transitively follow 2
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hops (i.e., friends-of-friends); (2) ignores transitive blocks
if transitive follows are present, which keeps controversial
participants discoverable, and (3), does not follow beyond an
id that is transitively blocked to avoid sybil attacks. Other
alternatives are possible, e.g., only following ids not blocked
by anyone, to increase the level of trust between participants.

4.1 Properties
This model implements subjective interest-based replica-
tion: stores can diverge in the logs they contain, driven by
the choices of individual participants. Stores are also even-
tually consistent but only on shared logs.
The use of interest graphs provides spam- and sybil-

resistance. Any participant may create as many identities
as they wish. However, each of those identities has to be
explicitly followed to be replicated. Convincing other par-
ticipants to follow new identities has a significant cost: in
the SSB community it implies creating regular compelling
content for others. Moreover, an attacker has to convince
other participants to keep following the sybil identities. If the
social graph had clusters of identities with few links to the
rest of the social graph, i.e. a ’cut’ [40], this would eventually
be detected and the connecting accounts would be blocked.

4.2 Limitations
Participants have limited control over the propagation of
their data: once their events are replicated, a blocked id can
still get updates from other participants that do not block
them. The root of the problem stems from the unilateral
direction of follow and block signals: it only takes one side
of a relationship to express interest or disinterest. However,
it takes both sides to establish mutual trust. Moreover, trust
works in the opposite direction as interest. In terms of flow
of data, trust means allowing data to flow to another partici-
pant, while interest means wanting data to flow to oneself.
Mutual interest therefore does not imply mutual trust. A
more private implementation would restrict propagation of
updates only through mutually trusted participants.
Moreover, interests are revealed during the update step.

Participants can therefore learn the social graph by recording
which ids are requested by others during updates.

4.3 Applications
Transitive-interest gossip is very useful for publishing, e.g.,
blogs: the load on the original publisher is limited to the
other stores with which they update. All further replication
is performed by the rest of the participants. It can therefore
scale to a large number of participants.
However, if it is used for group conversations or for en-

abling comments on blog posts, then the number of partici-
pants will likely be smaller because the original poster needs
to follow the other participants to see their comments.
Some privacy issues make this model inappropriate for

at-risk populations, such as investigative journalists who

may risk they lives by revealing their interests. However,
for participants for whom these issues are not critical, this
model provides a practical online social space free of trolls,
spammers, and unwanted advertisement without relying on
centrally managed infrastructure.

5 Related Work
The structure of append-only logs is similar to that of block-
chains for crypto-currencies [15]: they both consist of a
sequence of immutable events that can only be extended
by adding new events, and in which the integrity of earlier
events is guaranteed by the chain of hashes from later events.
However, for the gossip algorithms presented in this paper,
each participant has their own log and the system is not try-
ing to reach consensus on a single global state. The practical
adoption of SSB shows that eventual consistency is sufficient
to build many decentralised social applications [33]. Append-
only logs are also popular in industrial data stores as Kappa
Architecture [30] and have been used previously to provide
accountability [20] and for securing timelines [26].
Compared to many peer-to-peer systems implementing,

e.g., a global file system [6], or a global market place [34],
SSB is not aiming at building global, online platforms for
anonymous participants. Similar to decentralised online so-
cial networks [9, 19] using social overlays [18], SSB is tailored
for local or interest-driven deployments for particular com-
munities covering a variety of applications, with different
communities forming disjoint networks. The immutability
and wide replication of logs from participants fosters trust
by providing reliable signals on past behaviour.
Complementary to the algorithms we presented, other

results decrease storage usage while preserving availabil-
ity [23], and optimise the speed of propagation of updates
based on participant interactions [8] and relationships [28].
The transitive interest model of Section 4 uses ideas sim-

ilar to previous work for spam and sybil resistance. Sybil-
Limit [40] also leverages social interest signals to detect and
prevent sybil attacks, and Reliable Email [16] also uses friend-
of-friend whitelisting, gathered from email contacts, but to
unconditionally accept emails from a trusted network.

In summary, there is prior work for the different ideas pre-
sented in this paper. The main contribution of SSB is a novel,
and in our opinion elegant, synthesis with an active com-
munity of users and contributors. It is therefore a valuable
testbed for technical and social experimentations.

6 Conclusion
We have presented gossiping in Secure-Scuttlebutt (SSB),
through its core operations and algorithms organised around
authenticated single-writer append-only logs. We explained
an open gossip and a transitive-interest gossip models that
respectively work for small and medium-scale communities.
Both models provide eventual consistency for participants.
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Both are also compatible with cryptographic protocols, e.g.,
for private messaging, that use participants’ id (public key)
for restricting access to the content of logged events.

The open model is the simplest and is especially suited for
small groups and organisations running behind networks
that provide privacy and security. However, it is vulnerable
to spammers in larger and more open settings. The transitive
interest-based model, which corresponds to the model used
by the current SSB implementation, enables larger partic-
ipation and tolerates spam. It is currently practically used
with hundreds of daily active participants, and thousands of
occasional ones. However, it still has limited privacy guar-
antees that are not suitable for at-risk populations, such as
investigative journalists with sensitive interests.
Future research on more private designs, different social

signalling algorithms, and efficient gossip algorithms could
make new variants of SSB useful in more settings.
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